Homework 3 Solutions

Ch. 5 6,12,20,22,34,36
5.6
(a)

(b) $\int_{0}^{\infty} \frac{1}{\tau} e^{-t / \tau} d t=\int_{0}^{\infty} e^{-z} d z=1$
(c) $\bar{t}=\int_{0}^{\infty} t f(t) d t=\int_{0}^{\infty} \frac{t}{\tau} e^{-t / \tau} d t=\tau \int_{0}^{\infty} z e^{-z} d z=\tau$

For parts (b) and (c), we used the substitution $z=t / \tau$ and the identity $n!=\int_{0}^{\infty} z^{n} e^{-z} d z$

5.12

Since we are looking at the width (not the position) of the distribution, we can consider a Gaussian centered about the origin. Then, the Gaussian has $1 / 2$ its maximum value when

$$
\exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)=\frac{1}{2} \quad \frac{x^{2}}{2 \sigma^{2}}=\ln 2 \quad x=\sigma \sqrt{2 \ln 2}
$$

Therefore, $F W H M=2 x=2 \sigma \sqrt{2 \ln 2}$
5.20
(a) This is a range between -1 and $+1 \sigma$. Therefore, 68.3% of the population would fall in this range, or 683 men.
(b) This is over $+1 \sigma$. Therefore, $0.5-0.3413=15.9 \%$ fall in this range, or 159 men.
(c) This is over $+3 \sigma .0 .5-49.87=0.13 \%$ fall in this range, or about 1 man.
(d) This is between -2 and -1σ. 15.9% are below -1σ, while 2.3% are below -2σ, so 13.6% fall in this intermediate range, or about 136 men.

5.22

First, move the Gaussian to the origin by setting X to zero. This corresponds to the substitution $x \rightarrow x+X$. Then,

$$
P(t \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-t \sigma}^{+t \sigma} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) d x
$$

Now, let $x=\sigma z$. Then, $d x=\sigma d z$, and z runs between $-t$ and $+t$.

$$
P(t)=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{+t} \exp \left(-\frac{z^{2}}{2}\right) d z=\operatorname{erf}(t)
$$

5.34

Utilizing the table of the erf function in Appendix A of the book, we find that 5\% significance requires $t>1.96,2 \%$ significance requires $t>2.32$, and 1% significance requires $t>2.58$.

5.36

(a) The discrepancy is $(15-13) \pm \sqrt{1^{2}+1^{2}}=2.0 \pm 1.4$
(b) In this case, $t=2 / 1.4 \approx 1.4$, which means that there is a 16% chance of getting results with this discrepancy by random chance alone. Thus, this discrepancy is not significant at the 5% level; 5% confidence would require the probability of a false positive due to random chance to be below 5%, and thus require a t value of at least 1.96.

